Thursday, 24 October 2019

94% REDUCTION IN ENERGY STORAGE COSTS - WILL THIS SOLVE 'THE INTERMITTENCY PROBLEM'?


July 2018 was a very poor month for wind power. It fell 3.4 TWh below the average monthly figure for the year of 4.5 TWh

The UK’s 20,000 MW installed capacity of onshore and offshore wind turbines operated at just 7% capacity factor to generate 1.1 TWh of electricity in July 2018. 

Had they operated  at the 30.25% average capacity factor for the year of, 4.5 TWh would have been generated.  

That’s a shortfall of 3.4 TWh.
------------------------------//------------------------------

 "...Tesla’s Powerpacks are lithium-ion batteries, similar to a laptop or a mobile phone battery........In a Tesla Powerpack, the base unit is the size of a large thick tray. Around sixteen of these are inserted into a fridge-sized cabinet to make a single Tesla “Powerpack” ........With 210 kilowatt-hour per Tesla Powerpack, the full South Australian installation is estimated to be made up of several hundred units..."  
     
"...A control system will also be needed to dictate the battery’s charging and discharging. This is both for the longevity of battery as well to maximise its economic benefit........For example, the deeper the regular discharge, the shorter the lifetime of the battery, which has a warranty period of 15 years..." 
26,356 of these, with a capital cost of:  £1,318 billion can rectify one month of UK low wind power generation, for a lifespan of 15 years.
But for 60 years [The design life of a Nuclear Power Plant] Power Reserve Plants would have to be built 4XThe capital cost, to rectify 1 month of low-wind would be:
4 x £1,318 billion = £5,272 billion.

------------------------------//------------------------------
To store 3.4 TWh of energy, for delivery over 31 days, would require 97,143 Energy Vault Plants, with a lifespan of 30 years. At US$7.5 million [£5.85 million], they would have a capital cost of: £568 billion.

But for the 60 years [The design life of a Nuclear Power Plant] Energy Vault Plants would have to be built 2X. The capital cost, to rectify 1 month of low-wind would be:

2 x £568 billion = £1,136 billion.
------------------------------//------------------------------
To store 3.4 TWh of energy, for delivery over 31 days, would require 13,600 CRYOBattery Plants, with a lifespan of 30 to 40 years and a capital cost of: 
£150 billion.

But for the 60 years design life of a Nuclear Power Plant [80 years with economical life extension], CRYOBattery Plants would have to be built 2X. 
The capital cost, to rectify 1 month of low-wind would be:
2 x £150 billion = £300 billion.
------------------------------//------------------------------
The 13.5 GW of onshore wind, with a capital cost of £15 billion (£36 billion for 60 years) and the 8.5 GW of offshore wind, with a capital cost of £21 billion (£50.4 billion for 60 years), can now be backed up by storage to provide 24/7 electricity, for an additional capital cost of £150 billion (£300 billion for 60 years).
That's a total capital cost of just £386.4 billion for renewables + storage to supply 65.5 TWh per year of 24/7 electricity (about 20% of the UK's annual demand), for a 60 years period.

There is a consideration though, that £386.4 billion would finance the capital cost of 734 of GE Hitachi's BWRX-300 nuclear power plants, which would generate 1,736 TWh every year (5.6X the UK's annual demand), for a lifespan of 60 years.
Renewables + storage will require 26.5X the capital investment to generate the same amount of 24/7, low-carbon electricity as advanced nuclear power plants.

It would appear 24/7 electricity from renewables + storage still has a way to go.


Wednesday, 16 October 2019

Labour's Offshore Wind Policy Overstates The Capacity To Supply Electricity By Over 1/3rd


There are issues with the 2 figures the Policy states, which leave it wide open for damaging scrutiny.

£83 billion over 10 years, will average out at £8.3 billion per year.

The very latest offshore wind farm, 3.6 GW Dogger Bank, using the gigantic and very latest GE 12 MW offshore wind turbines, has a capacity factor of 54%, compared to the 38.5% capacity factor for the UK’s current 8.4 GW of offshore wind farms.

This is a tremendous 40 % ‘technological gain’ and it would be irresponsible to anticipate bettering a 54% capacity factor over the next 10 years.

£8.3 billion per year of capital investment, as a pro-rata proportion of Dogger Bank’s capital cost of £9.0 billion, would finance 3.32 GW of cutting-edge wind turbine technology.

 3.32 GW would only be able to supply 4,150,000 households in the first year and 33.2 GW of capacity, after 10 years of construction, would only be able to supply 41,500,000 households.

Stating 57,000,000 households is exaggerating the capability of what £83 billion of investment will deliver for the voting public and for the investment community, 
by 37%.


That is surely unacceptable in political and financial terms and should be addressed forthwith.
------------------------------//------------------------------
PS: It's a bit misleading to talk about 41,500,000 households, when there are only 27,000,000 in the UK.

The 54% capacity factor for Dogger Bank was calculated from a BEIS household-usage figure of 3,781 kWh per year.

After the capital expenditure of £83 billion, 33.2 GW of offshore wind at 54% capacity factor will be able to supply, on average, 157 TWh of intermittent electricity each year.

Th UK uses about 360 TWh per year, but it has to be of the 24/7 variety. So £83 billion invested in offshore wind, will, apparently, supply 44% of the UK's electricity generation.

But - to get it to 24/7 'quality':

For every 10 MW of wind power added....at least 8 MW of backup power must also be dedicated 

However, that's another capital cost investment in gas-fired power plants, which will create many more jobs, but won't do a lot for Labour's 'Net Zero-Carbon' policy.

Another blog post story, for another time.